Altona Mining Ltd.: Project Cloncurry: Ressourcen-Upgrade Bedford

Donnerstag, 09.03.2017 12:20 von

Altona Mining Ltd.: Project Cloncurry: Ressourcen-Upgrade Bedford

- Die Mineralressource der Lagerstätte Bedford erhöhte sich auf 4,8 Mio. Tonnen mit 0,80% Kupfer und 0,21 g/t Gold.

- Zunahme des enthaltenen Kupfermetalls um 124% und des enthaltenen Goldes um 191%.

- Die gesamte Mineralressource des Projekts Cloncurry beträgt jetzt 1,67 Mio. Tonnen enthaltenes Kupfer und 0,4 Mio. Unzen enthaltenes Gold.

Altona Mining Limited (Altona oder das Unternehmen - http://www.commodity-tv.net/c/mid,5428,Company_Updates/?v=297328) gibt eine neue Mineralressourcenschätzung für die Lagerstätte Bedford bekannt. Die Lagerstätte befindet sich auf dem sich vollständig in Unternehmensbesitz befindlichen Kupferprojekt Cloncurry in der Nähe des Mt Isa in Quensland. Bedford liegt 6km südöstlich der geplanten Tagebaumine und Aufbereitungsanlage Little Eva und befindet sich auf bewilligten Bergbaupachtgebieten.

Die neue Ressourcenschätzung umfasst: 4,8 Mio. Tonnen mit 0,80% Kupfer und 0,21 g/t Gold für 38.000 Tonnen enthaltenes Kupfer und 32.000 Unzen enthaltenes Gold.

Die Ressource wird zu einem unteren Cut-Off-Gehalt von 0,3% angegeben und ist als angezeigt und geschlussfolgert klassifiziert. Eine vollständige Aufstellung finden Sie in Tabelle 1 und 2. Eine detaillierte Zusammenfassung der Hilfsdaten und Methodik wird in Anhang 1, der Tabelle 1 der 2012 Edition of the JORC Code gegeben.

Die gesamte Mineralressource des Projekts Cloncurry beträgt jetzt:

290 Mio. Tonnen mit 0,58% Kupfer, 0,05 g/t Gold für 1,67 Mio. Tonnen enthaltenes Kupfer und 0,4 Mio. Unzen enthaltenes Gold (Appendix 2).

Die neue Mineralressourcenschätzung für Bradford basiert auf einem neuen geologischen Modell, das durch detaillierte Oberflächengeochemie und geologische Kartierungen gestützt wird. Das neue Modell wurde ebenfalls von zwei zusätzlichen Kernbohrungen gestützt, die für metallurgische Proben und geotechnische Studien niedergebracht wurden.

Für die Mineralressource wird nur sulfidisches Erz angegeben, das sich von 20m bis 140m unter die Oberfläche erstreckt. Eine Oxidationszone, die sich von der Oberfläche bis in Tiefen von 20m bis 30m erstreckt, wurde in die Ressourcenschätzung nicht eingeschlossen.

Die Zunahme gegenüber der Schätzung aus dem Jahr 2012 ist in erster Linie das Ergebnis des besseren Verständnisses der Kontinuität und der Geometrie. Basierend auf Kartierungen der übertägigen Abbaustätten und einer höher auflösenden Beprobung des Kupfers im Boden konnten die vererzten Strukturen besser abgegrenzt werden. Eine Zunahme der Tonnage resultiert aus neuen Dichtedaten, die aus Bohrkernen gewonnen wurden im Gegensatz zu früheren konservativen Schätzungen.

Die Lagerstätte Bedford ist Teil der Minenentwicklung Little Eva und der Produktionsbeginn ist im Jahr 2 des Minenplans vorgesehen. Das neue Modell deutet das Potenzial zur Erweiterung der Erzvorräte Bedford an. Optimierungen der Tagebaugrube sind als Teil der Projektoptimierung geplant.

Geologie

Die Lagerstätte Bedford ist ein Eisen-Oxid-Kupfer-Gold (IOCG) -Vererzungssystem, das für den Bezirk Cloncurry typisch ist. Die benachbarte Lagerstätte Little Eva ist eine typischere IOCG-Lagerstätte mit Ähnlichkeiten zur großen Lagerstätte Ernest Henry 70km südöstlich.

Die Lagerstätte ist in einer steil nach Westen einfallenden Scherzone beherbergt, die nach Norden bis Nordnordost streicht. Die Scherzone ist zwischen 50 und 120m mächtig. Darin kommen gestaffelte und überlappende vererzte Strukturen vor. Am besten ist die Vererzung über eine Streichlänge von 2,5km in zwei getrennten Zonen entwickelt, Bedford North und Bedford South. Individuell vererzte Strukturen in Verbindung mit Erzgehalten (>0,3% Kupfer) besitzen wahre Mächtigkeiten zwischen 5 und 12m.

Die Stratigrafie der Wirtsgesteine umfasst ein Nord- bis Nordnordoststreichen, mäßig bis steil nach Westen einfallende geschichtete Abfolge von Amphibolit- und Biotitschiefer. In diese Gesteinsabfolge drangen konkordant Granit und pegmatitähnliche Intrusions-/Lagergänge ein.

Die vererzten Strukturen in Bedford South sind zum größten Teil schichtungsparallel. Laut Interpretation streichen die vererzten Strukturen in Bedford North von Nord nach Süd und kreuzen die nach Norden bis Nordost streichende Stratigrafie. Sekundäre nach Nord bis Nordost streichende Zwischenstrukturen werden entlang der Schichtung/Schieferung gefunden. Magnetit-Biotit-Alterationsparagenesen mit Quarzgängen kommen konzentriert in den vererzten Strukturen mit einer starken Feldspat-Hämatit-Alteration im Liegenden vor.

Das dominante Erzmineral ist grobkörniger Kupferkies (mit untergeordnet Magnetit, Pyrit, Magnetkies und Gold), der innerhalb von Quarzgängen, Brekzienfüllungen und eingesprengt im Wirtsgestein vorkommt.

Die Lagerstätte ist an der Oberfläche nicht aufgeschlossen. Eine unregelmäßige 20 bis 30m mächtige Verwitterungszone mit sekundärer Kupferoxidvererzung bedeckt die Lagerstätte.

Ressourcendefinition und Modellierung

Die Bohrungen werden zum größten Teil in Abständen von ungefähr 25m im Streichen und 25m in Fallrichtung über den Hauptzonen niedergebracht. Die Abstände zwischen den Bohrlinien nehmen im Streichen von den Hauptzonen auf 100m zu. Die Bohrungen umfassen 99 RC- und 2 Kernbohrungen mit einer Gesamtlänge von 10.139m. Alle Bohrungen wurden von West nach Ost niedergebracht, um die ungefähren wahren Mächtigkeiten der Vererzung zu durchteufen. Die RC-Bohrungen wurden mittels eines Face Sampling Bohrhammers durchgeführt. Eine kleine Anzahl von RAB-Bohrungen (13) wurde verwendet, wo keine anderen Daten zur Verfügung standen und die aus RAB-Daten abgeleiteten Ressourcen werden als geschlussfolgert klassifiziert.

Die Proben wurden routinemäßig in 1m-Abständen für das Protokollieren und Analyse gesammelt. Alle Proben wurden zur Multielement-ICPAES und/oder AAS-Analyse an angesehene Labors geschickt. Qualitätssicherungs-/Qualitätskontrollproben wurden routinemäßig zugegeben und überwacht. Die Qualitätsüberwachung gewährleistete, dass die Genauigkeit und Präzision dieser Analyse akzeptabel ist.

Geologische 3D-Modelle, die aus den Daten der übertägigen Kartierungen, detaillierten Oberflächengeochemie und den Bohrungen erstellt wurden, wurden zum Beleg der Ressourcenschätzung verwendet. Die Ressourcenschätzung wurde mittels Blockmodellmethodologien im Einklang mit geplanten semiselektiven Bergbauparametern durchgeführt. Kupfer- und Goldgehalte wurden mittels herkömmlichen Kriging im Blockmaßstab geschätzt. Eine Nachbereitung der Daten durch gleichmäßiges Konditionieren wurde angewandt, um Blockgehalte mit einem selektiven Bergbaumaßstab zu schätzen.

In situ Dichtewerte basieren auf physikalischen Messungen, die an Bohrkernen durchgeführt wurden, und auf Vergleichsdaten aus den benachbarten Lagerstätten.

Für Fragen wenden Sie sich bitte an:

Alistair Cowden
Managing Director
Altona Mining Limited
Tel: +61 8 9485 2929
altona@altonamining.com

David Tasker
Professional Public Relations
Perth
Tel: +61 8 9388 0944
David.Tasker@ppr.com.au

Jochen Staiger
Swiss Resource Capital AG
Tel: +41 71 354 8501
js@resource-capital.ch

Über Altona

Altona Mining Limited ist ein an der ASX notiertes Unternehmen, das sich auf das Projekt Cloncurry in Queensland, Australien, konzentriert. Das Projekt beherbergt Mineralressourcen, die ungefähr 1,65 Mio. Tonnen Kupfer und 0,41 Mio. Unzen Gold enthalten. Es ist vorgesehen, eine Kupfer-Gold-Tagebaumine und Aufbereitungsanlage mit einer Kapazität von 7 Mio. Tonnen pro Jahr zu entwickeln. Die Entwicklung ist genehmigt mit einer geplanten Jahresproduktion1 von 38.800 t Kupfer und 17.200 Unzen Gold über mindestens 13 Jahre. Eine endgültige Machbarkeitsstudie wurde im März 2014 veröffentlicht. Altona hat eine Rahmenvereinbarung mit Sichuan Railway Investment Group zur vollständigen Finanzierung und Entwicklung des Projekts durch deren Tochtergesellschaft in Hongkong, China Sichuan International Investment Limited, geschlossen. Der Abschluss der Transaktion ist vor dem 31. Juli 2017 geplant.

1Bitte beziehen Sie sich auf die ASX-Pressemitteilung Cost Review Delivers Major Upgrade to Little Eva vom 13. März 2014, die die Information bezüglich dieses Produktionsziels und die prognostizierte Finanzinformation, die auf diesem Produktionsziel basiert, zusammenfasst. Das Unternehmen bestätigt, dass alle wesentlichen Annahmen, die das Produktionsziel unterstützen und die auf diesem Produktionsziel basierenden Finanzprognosen, die in der oben genannten Pressemitteilung erwähnt werden, weiterhin gültig sind und sich nicht wesentlich geändert haben.

Aussage der kompetenten Person

Die Informationen in diesem Beicht, die sich auf Explorationsziele, Explorationsergebnisse, Mineralressourcen oder Erzvorräte beziehen, basieren auf einem Bericht von Herrn Frank Browning, MSci (Hons), MSc, GAIG. Herr Browning ist ein Vollzeit-Mitarbeiter des Unternehmens und verfügt über fünf Jahre der entsprechenden Erfahrung. Er ist aber kein Vollmitglied der AIG. Der Bericht wurde von Herrn Roland Bartsch, BSc (Hons), MSc, MAusIMM betreut und geprüft und diese Pressemitteilung beruht auf von Herrn Bartsch zusammengestellten Informationen. Herr Bartsch ist ein Vollzeit-Mitarbeiter des Unternehmens und verfügt über ausreichendes Wissen und Erfahrung über diesen hier vorliegenden Vererzungs- und Lagerstättentyp. Seine Tätigkeiten qualifizieren ihn als kompetente Person gemäß den Regeln des 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Herr Bartsch stimmt den hier eingefügten Informationen, die auf seinen Informationen basieren, in Form und Kontext je nach Erscheinen zu.

Die Ausgangssprache (in der Regel Englisch), in der der Originaltext veröffentlicht wird, ist die offizielle, autorisierte und rechtsgültige Version. Diese Übersetzung wird zur besseren Verständigung mitgeliefert. Die deutschsprachige Fassung kann gekürzt oder zusammengefasst sein. Es wird keine Verantwortung oder Haftung: für den Inhalt, für die Richtigkeit, der Angemessenheit oder der Genauigkeit dieser Übersetzung übernommen. Aus Sicht des Übersetzers stellt die Meldung keine Kauf- oder Verkaufsempfehlung dar! Bitte beachten Sie die englische Originalmeldung auf www.sedar.com , www.sec.gov , www.asx.com.au/ oder auf der Firmenwebsite!


Tabelle 1: Bedford Mineralressource bei 0.3% Kupfer Cut-off
Tonnen Kupfer (%Gold EnthalteneEnthaltene
(Mio.) ) (g/t) s s
Kupfer Gold
(Tonnen) (Unzen)
erkunde- - - - -
t

angezei2.3 0.95 0.23 22,000 17,000
gt

geschlu2.5 0.66 0.19 16,000 15,000
ssfolge
rt

Total 4.8 0.80 0.21 38,000 32,000
Anmerkung: Gesamtsummen könnten aufgrund Rundens abweichen.

Tabelle 2: Bedford Mineralressource bei verschiedenen Cut-off-Gehalten
Cut-off GTonnen Kupfer EnthaltenGold Enthalten
ehalt (Mio.) (%) es (g/t) es
Kupfer Gold
(% Cu) (Tonnen) (Unzen)
0 29.2 0.19 56 0. 51
,000 06 ,000

0.15 7.1 0.61 43,000 0.17 39,000
0.2 5.9 0.70 41,000 0.19 36,000
0.3R 4.8 0.80 38,000 0.21 32,000
0.4 4.1 0.88 36,000 0.22 29,000
0.5 3.4 0.97 33,000 0.24 26,000
R Für Mineralressource angegebener Cut-Off-Gehalt.

Tabelle 3: Vergleich der Bedford Mineralressourcesdchaetzungen ueber Cut-off-Gehalt von 0.3% Kupfer
Tonnen Kupfer (%Gold EnthaltenEnthalten
(Mio.) ) (g/t) es es
Kupfer Gold
(Tonnen) (Unzen)
2017 Schät4.8 0.80 0.21 38,000 32,000
zung

2012 Schät1.7 0.99 0.20 17,000 11,000
zung

% Änderung182% -19% 5% 124% 191%


http://www.irw-press.at/prcom/images/messages/2017/39181/Altona_DE_NEU.001.jpeg


Figure 1: Cloncurry Project location map


http://www.irw-press.at/prcom/images/messages/2017/39181/Altona_DE_NEU.002.jpeg


Figure 2: Little Eva Project layout including Bedford


http://www.irw-press.at/prcom/images/messages/2017/39181/Altona_DE_NEU.003.png


Figure 3: Bedford North block model cross section N7767750. Block colour represents ordinary kriging derived copper grade. Estimation domains and surface datasets utilised in modelling are also labelled


http://www.irw-press.at/prcom/images/messages/2017/39181/Altona_DE_NEU.004.png


Figure 4: Bedford South block model cross section N7766425. Block colour represents ordinary kriging derived copper grade. Estimation domains and surface datasets utilised in modelling are also labelled


http://www.irw-press.at/prcom/images/messages/2017/39181/Altona_DE_NEU.005.png


Figure 5: Oblique three dimensional view (looking northeast) of the classified resource model excluding oxide (Unclassified) and low grade envelope domains (Inferred)


APPENDIX 1: TABLE 1 OF THE 2012 EDITION OF THE JORC CODE

The table below is a description of the assessment and reporting criteria used in reporting the Exploration Results that reflects those presented in Table 1 of The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Section 1: Sampling Techniques and Data
Criteria Commentary
Sampling · The drilling dataset incorporates 24 Rotary
techniqu Air Blast (RAB), 99 Reverse Circulation (RC)
es and 2 diamond drill holes for a total of
11,061m.

· RAB accounts for 8% of drilled metres and was
only
utilised
in the absence of RC or DD sampling (13 holes w
ithin resource
area
), where the tenor and thickness of
mineralisation is consistent with results from
adjacent drill sections and overlying
Cu-in-soil geochemistry. All mineralisation
delineated by RAB drilling is classified as
Inferred
Resources.

· 84% of samples were collected at 1m
intervals. The remainder were collected at 2m
intervals, with a small quantity of partial
metre sample lengths
(<1%).

· Approximately 2-3kg sample weights were
obtained from each interval for geochemical
analysis.

· 2 RC drillholes were completed by CRAE in
1990 (1.6% of drilling dataset). All remaining
drilling was conducted by Altona Mining (or
precursor company Universal Resources) between
2003 and
2015.

· CRAE RC and Universal RAB sampling procedures
are not
available.

· Altona RC samples were collected directly
using a trailer mounted cyclone and cone (35%)
or triple deck riffle splitter (65%). A small
number of wet intervals were sub-sampled with
a scoop
(<1%).

· Altona diamond core sampling was guided by
geology, with quarter or half core submitted
for
analysis.

· All samples were collected into pre-numbered
calico bags, packed by Altona staff into
polyweave or bulka bags and shipped by truck
to laboratories in
Townsville.

Drilling · RAB drilling specifications are not available.
techniqu· RC holes were drilled using 5.375, 5.5, or
es 6 face sampling
hammers.

· HQ3 and NQ3 core sizes were used in diamond
drilling.

· Holes were drilled at a dip angle of ~-60o to
intersect mineralisation at optimal true width
angles.

Drill · Core recovery was measured and RC sample
sample recovery visually estimated.
recovery

· Recoveries are considered to be excellent
averaging > 90%, and typically 100%. Lower
recoveries were occasionally observed in the
hole collars (top few metres).


· The majority of samples were dry.
· Every individual RC sample was collected into
the cyclone prior to cone
splitting.

· RC sample bias due to preferential loss/gain
of fine/coarse material is considered well
within acceptable
limits.

· Best practice methods were used for diamond
coring to ensure the return of high quality
core
samples.

Logging · All Altona drill holes were logged by
geologists at the rig using Altona standard
logging
procedures.

· Altona logging was qualitative and
quantitative including, colour, lithology,
mineralisation, alteration, sulphide and oxide
mineralogy, sulphide and oxide amount,
texture, grain size and
structure.

· Representative drill core and RC chips have
been
retained.

Sub-sampl· CRAE RC and Universal RAB sampling procedures
ing are not
techniqu available
es and .
sample · Altona RC samples were split at an 87.5% :
preparat 12.5% ratio using cyclone and cone or riffle
ion splitter to obtain a ~2-3kg sub-sample for
analysis. Occasional wet intervals were
sub-sampled using a
scoop.

· Diamond core intervals were halved or
quartered to produce
sub-samples.

· Samples were sent to ALS or SGS Analabs
Laboratories in Townsville for sample
preparation and analysis. Both are independent
commercial certified laboratories that use
industry standard preparation including
drying, crushing and
pulverisation.

· Typical sub-sample sizes are considered
representative for typical copper
mineralisation in the Cloncurry Project
area.

Quality · The majority of samples (98%) were analysed
of at SGS Analabs in
assay Townsville
data as outlined below.
and · Copper was analysed using a mixed acid
laborato digestion (hydrochloric,
ry
tests perchloric, hydrofluoric) followed by
inductively coupled plasma

atomic emission spectrometry (ICPAES) with a re-
assay of ore grade (>1% Cu) samples by
AAS
.
· From 2003 to 2006 Gold was analysed using a
50g fusion followed by aqua regia digestion of
the Au/Ag prill with a AAS
determination.
In 2009 Gold was analysed by fire assay with
AAS finish.


· Quality Control comprised standards
(certified reference materials for gold,
copper and blanks) inserted into the sampling
sequence at a ~1:20 ratio, to test the
accuracy of laboratory analysis for each
sample batch. Field duplicates were also
collected at a ~1 : 20 ratio to control
sampling precision, involving the riffle
splitting of bulk RC samples or splitting of
diamond core
sub-samples.

· Duplicate data display acceptable accuracy
and precision. Results for standard reference
materials do not exhibit positive bias beyond
Altonas two standard deviation
benchmark.

· Field duplicate 2nd split were submitted to
an
u
mpire laboratory on a 1:20 basis and compared
well
.
· No geophysical tools were used to determine
the results reported
here.

Verificat· Results were checked by several Altona
ion of personnel.
sampling
and · No twinned holes.
assaying· Field logging data was primarily collected
using a laptop and uploaded into the company
Datashed database and validated by company
database
personnel.

· All assay files were received in digital
format from SGS Analabs Laboratory. Data was
uploaded into the Altona Datashed database and
validated by company database personnel. No
manual data inserts took
place.

· No adjustments have been applied to the
results.

Location · CRAE collar locations were measured using a
of data hand-held
points GPS.

· Altona RC and diamond collar locations have
been surveyed by licensed surveyors using a
DGPS with approximately 0.1m

or better horizontal accuracy. Elevation
accuracy is considered to be less than
0.5m.
RAB holes have reported accuracies from 0.005
to
3m.

· 25% of Altona RC and diamond drill holes have
been down-hole surveyed with professional gyro
systems,
6
9% have down-hole camera surveys and the
remaining 6% have collar orientations
only.

· The Grid is GDA94 MGA Zone 54.
Data · Drilling has typically been completed at 25m
spacing intervals along 25m spaced east-west sections.
and Section line spacing increases to 50-100m
distribu outside the main mineralised
tion zones.

· The majority of samples were collected at 1m
downhole intervals. Other sample lengths do
not exceed
2m.

Orientati· Mineralisation in Bedford South strikes
on of NNE-SSW, changing to a N-S orientation in
data in Bedford North. Both zones exhibit steep
relation westerly
to dips.
geologic
al · Drilling was completed to the east at -60
structur degree dip, such that with changing
e mineralisation dip, true widths are estimated
to vary from 80-100% of down hole intercepts.


· No bias is considered to result from drilling
direction.

Sample · Samples from RC and diamond drilling were
security collected and bagged into pre-numbered calico
bags at the drill site during the drilling
operation. Unique sample numbers were retained
during the whole
process.

· Samples were collected and delivered to SGS
Analabs as they were collected.


· Samples were stored in Altona facilities in
Cloncurry prior to transport to
Townsville.

· All samples were then catalogued and sealed
prior to dispatch to laboratory by Altona
staff.

Audits · QA/QC samples were routinely monitored by the
or database manager and geologist on a batch and
reviews campaign basis. The accuracy of key elements
such Cu and Au, was acceptable and the field
duplicate assay data was unbiased and shows an
acceptable level of
precision.

· No external audits or reviews have been
undertaken.

Section 2: Reporting of Exploration Results
Criteria Commentary
Mineral · Bedford is within Mining Lease 90164; 100%
tenement owned by Altona
and Mining.
land
tenure · No joint ventures apply.
status · There are agreements in place with the native
title holders, the Kalkadoon people and with
landholders.

· No significant historic sites or national
parks are located within the reported
exploration
site.

· The Mining Lease was granted in late 2012 and
is in good
standing.

Explorati· CRAE completed mapping (Bedford South) and
on done ground magnetics, followed by 5 reconnaissance
by RC drill holes in
other 1990.
parties
· Universal Resources completed RAB (43 holes),
followed by RC (97 holes) and diamond drilling
(3 holes) from 2003 to
2009.

· Altona Mining completed an additional diamond
drill hole in 2015, as well as

assaying a previously unsampled geotechnical
diamond
hole.

· In 2015 Altona also completed detailed
mapping and high resolution soil sampling over
Bedford
North
on a 20 x 10m spacing.
Geology · Bedford deposit is interpreted to be part of
the broader Iron-Oxide-Copper Gold (IOCG)
style mineral system common to the Cloncurry
district.

· Bedford host lithology is characterised by a
north to north northeast striking, steep west
dipping interlayered sequence of amphibolite
and biotite schist, underlain by psammite and
intruded concordantly by planar
granite
and pegmatite intrusions.
· Alteration appears to be zoned, with
magnetite-biotite alteration and quartz
veining concentrated in ore zones, above a
strongly feldspar-hematite altered foot wall.


· Sulphide mineralisation is associated with a
steep west dipping shear zone and comprises
chalcopyrite and pyrite in planar bodies that
can be parallel or slightly oblique to
bedding. Copper oxide species occur above top
of fresh rock, in a ~20 to 30m zone of
variably weathered bedrock.


· Ore formation is interpreted to be
structurally controlled, with brittle
fracturing facilitating hydrothermal fluid
flow and accommodation of metal sulphide
precipitation. Structural development

at interfaces between rocks of contrasting
competency is
evident
. Moderate to shallow northerly plunging ore
shoots
are
interpreted to be the result of the low angle
in
tersection of transgressive mineralised structur
es
and
more competent stratigraphy.
Drill · Exploration results are not being reported
hole for the Mineral Resource area. Drill hole
Informat information is provided in the Mineral
ion Resource estimation
section.

Data · Exploration results are not being reported
aggregat for the Mineral Resource
ion area.
methods

Relations· Exploration results are not being reported
hip for the Mineral Resource
between area.
minerali
sation · Drilling azimuths are considered to be
widths approximately perpendicular to the strike and
and dip of the mineralisation resulting in
intercep unbiased true
t widths.
lengths

Diagrams · Refer to the Figures 1 to 5.
Balanced · Exploration results are not being reported
reportin for the Mineral Resource
g area.

Other · Exploration results are not being reported
substant for the Mineral Resource
ive area.
explorat
ion
data

Further · Additional work in the future will consist of
work diamond core drilling for metallurgical and/or
geotechnical testwork sampling, as well as
infill and exploration step-out RC drilling
for resource definition purposes.


Section 3: Estimation and Reporting of Mineral Resources
Criteria Commentary
Database · Data used for estimation is stored within a
integrit SQL Server database and is managed using
y DataShed software. The structure of the
drilling and sampling data is based on the
Maxwell Data
Model.

· Drill data is logged directly into digital
logging systems and uploaded to the database
by the database administrator (Altona standard
procedures since
2005).

· Laboratory data has been received in digital
format and uploaded directly to the database.
(Altona standard procedures since
2002).

· In both cases the data was validated on entry
to the database, by a variety of means,
including the enforcement of coding standards,
constraints and triggers. These are features
built into the data model that ensure that the
data meets essential standards of validity and
consistency.

· Original data sheets and files have been
retained and are used to validate the contents
of the database against the original
logging.

· Validation of existing collar, downhole
survey and assay data was completed.
Validation steps
included:

· Drillhole collar locations were compared to
the topographic surface.


· Downhole deviations of all drillhole traces
were examined and problematic surveys were
excluded.


· All data (e.g. assay, bulk density, RQDs,
core recovery) was checked for incorrect
values by deriving minimum and maximum values.


· Lithology data was checked to ensure standard
rock type codes were used.


· Meta-data fields were checked to ensure they
were populated and that the data recorded was
consistent.

Site · Numerous site visits have been undertaken by
visits Mr
Bartsch
and Mr Browning.
Geologica· Confidence in the geological interpretation
l of the deposit is moderate to high. Good local
interpre constraints exist on the spatial extent and
tation geometry of separate lithological and
structural components through the integrated
analysis of surface mapping, surface
geochemistry, surface geophysics, drill hole
logging, downhole geochemistry, magnetic
susceptibility and radiometrics. Drilling and
high resolution soil
samp
ling (10mE by 25mN) provide good deposit scale
constraints on the geometry and continuity of
mineralisation.

· Bedford deposit is interpreted to be part of
the broader Iron-Oxide-Copper Gold (IOCG)
style mineral system common to the Cloncurry
district.

· Mineralisation occurs at surface, is exposed
in sub-crop, and is confirmed through drilling
in the main zones down dip to ~140m vertical
depth below
surface.

· The deposit is hosted within a steep west
dipping shear zone striking north to north
northeast. The shear zone varies from 50 to
120m wide with internal arrays of
mineralised
structures.
· Mineralisation has been defined in two
separate zones, Bedford North and Bedford
South, the shear zone is however through
going. The overall deposit extends over a
strike length of 2.5km; the northern zone
1.15km and southern zone 850m long.

Within the shear zone individual mineralised
structures associated with ore grade
mineralisation (>0.3% copper) are planar and
have true widths ranging from 5 to
12m.

· Host stratigraphy comprises a north to north
northeast striking, moderate to steep west
dipping interlayered sequence of amphibolite
and biotite schist, underlain by psammite and
intruded concordantly by narrow planar granite
and pegmatoidal
dykes/sills.

· In Bedford South mineralised structures are
interpreted to be bedding/foliation parallel.

In Bedford North the main mineralised
structures are interpreted to trend
north-south stepping across north northeast
striking stratigraphy, with the development of
a set of secondary north northeast linking
structures along bedding/foliation.

Moderate to shallow northerly plunging ore
shoots are interpreted to be the result of the
low angle intersection of transgressive
mineralised structures and more competent
stratigraphy.

· Magnetite-biotite alteration and quartz
veining are concentrated in the ore zones,
above a strongly feldspar-hematite altered
foot
wall.

· The dominant ore mineral is coarse grained
chalcopyrite (with minor magnetite, pyrite,
pyrrhotite and gold) which occurs within
quartz veins, breccia fill and disseminations
within the host shear
zone.

· An irregular 20 to 30m thick zone of
weathering with oxide mineralisation blankets
the deposit. Although the top of fresh rock is
well defined variability of copper mineral
species within the weathering profile is not
well
understood.

· Geological interpretation was completed on a
sectional basis; from which polylines were
interpolated to create 3D solid wireframes for
mineralisation and surfaces for weathering
interfaces.

· The main mineralisation domains were defined
using grade constraints. A nominal cut-off
grade of 0.3% Cu was used to define boundaries
between strongly mineralised structures and a
weakly-mineralised low grade envelope, which
was itself separated from unmineralised rock
by a 0.1% Cu grade
shell.

· Three main geological domains were defined
based on observed internal consistency in
geological characteristics: north-south
trending mineralised structures,
north-northeast trending linking mineralised
structures and low grade
envelopes.

· Statistical and geostatistical analysis
verified the domain definition by confirming
statistical homogeneity and the presence of
distinct continuity
characteristics.

· Contact analysis informed the selection of
hard domain boundaries for
estimation.

· All domains were further subdivided using a
top of fresh rock surface to separate oxide
mineralisation and primary sulphide
mineralisation.

Dimension· The main zone of mineralisation extends over
s a strike length of 2.5km, including a distinct
1.15km long northern zone Bedford North and
850m long southern zone Bedford
South.

· Mineralisation dips broadly west at 70-80°.
· Mineralisation occurs at surface, is exposed
in sub-crop, and is confirmed through drilling
in the main zones down dip to ~140m vertical
depth below
surface.
-
· The deposit remains open to north and south
along strike, down dip and between the two
zones.

Estimatio· Drillhole sample data was flagged from
n and estimation domain
modellin wireframes.
g
techniqu· Sample data was composited to a 1m downhole
es length.

· The influence of extreme outliers was reduced
by top-cutting, with top-cut levels determined
by a combination of qualitative (grade
histograms, lognormal probabilty plots) and
quantitative analysis (decile analysis).
Top-cuts were applied to nine gold and two
copper samples, less than 1.5% of samples in
affected
domains.

· Variography was completed to characterise
copper and gold continuity in each sulphide
domain.

Nugget varies greatly as a proportion of
overall variance in different domains,
recording changes in the degree of small scale
variability and/or errors. High influence is
modelled in the north-south mineralised
structures, accounting for ~30% of copper and
13% of gold variability. Geometric anisotropy
is consistent with the geological model, with
variogram reference planes striking north to
north-northeast and dipping steeply west
(70-80°). A shallow (20-25°) northerly plunge
is also evident on this plane.

Directional variogram model ranges include:
North-south mineralised structures - 54m along
strike, 90m down dip, 3.8m across plane.
North-northeast linking mineralised structures
- 52m along strike, 30m down dip, 4m across
plane. Low grade envelope - 55m along strike,
40m down dip, 6m across
plane.

· Drillhole spacing ranges from 25m to 100m
along strike; 25m on-section spacing is
typical.

· Grade estimation was into parent blocks of
10mE by 20mN on 10mRL via ordinary kriging.


· Three estimation passes were completed with
search ellipse orientations derived from
principal directions of continuity in the
variogram. Search distances in the first
search were optimised by domain type using
quantitative kriging neighbourhood analysis.
These distances were doubled and subsequently
trippled in the second and third estimation
passes.

· Search parameters in the second and third
estimation passes for the north-south trending
mineralised structures were further optimised,
with reduced minimum and optimum sample
numbers improving local accuracy at the
transitions between dense and sparse sample
data.

· Post-processing of the ordinary kriged panel
data by uniform conditioning was used to
estimate copper grades at the selective mining
unit (SMU) scale of 5mE by 5mN by
5mRL.

· The ordinary kriged copper and gold panel
model grades were visually validated against
the input drillhole data. Comparisons were
also carried out between domain wireframe and
domain block model volumes, average domain
sample and domain block grades, as well as
grade-tonnage curves for different estimation
methods.

Moisture · Tonnes have been estimated on a dry basis.
· Moisture content has not been tested.
Cut-off · The Mineral Resource is reported above a 0.3%
paramete copper cut-off grade and within 140m of the
rs surface, to reflect current commodity prices
and open pit
mining.

Mining · Planned extraction is by open pit mining.
factors · Mining factors such as dilution and ore loss
or have not been
assumpti applied.
ons

Metallurg· No metallurgical assumptions have been built
ical into the resource
factors models.
or
assumpti· Preliminary metallurgical and mineralogical
ons testing on samples from sulphide
mineralisation support recovery and indicate
that economic concentrate grades can be
achieved.

Environme· The Bedford resource is included as a
ntal component of the Little Eva Project covered by
factors a granted Environmental Authority
or (EA).
assumpti
ons · Baseline and ongoing studies form part of EA
requirements.

· Analysis of simulated tailings fluids and
solids prepared through laboratory scale test
work indicates favourable environmental
results for the neighbouring Little Eva
deposit. Simulated sulphide and oxide tailings
were found to be benign in terms of potential
for formation of acidic, saline or
metalliferous
drainage.

· By nature of similar setting to Little Eva,
in-part shared host rocks and low sulphide
content, no adverse environmental
considerations have been built into the
resource
model.

Bulk · 23 in-situ bulk density measurements were
density collected by Altona personel from BFD163 in
2015. Values are based on physical
measurements conducted on core samples using
the weight in air / weight in water
method.

· Samples were primarily collected from
partially weathered rock. Excluding two
outliers an average density of 2.78 was
returned.

· In-situ bulk densities applied to the
resource estimate are: oxidised rock 2.4
t/m
3, and, fresh rock 2.8 t/m3. These values are
considered
conservative.

Classific· Bedford Mineral Resources have been
ation classified on the basis of confidence in
geological and grade continuity using the
drilling density, geological model, modelled
grade continuity, estimation passes and
conditional bias measures (slope of the
regression and kriging efficiency) as
criteria.

· Measured Mineral Resources - none defined
· Indicated Mineral Resources - have been
defined in areas where drill spacing is 25m
by 25m or less, extending
t
o a down dip extent of up to 25m below
drilling. Block grades were primarily
calculated in the first estimation pass.
Further drilling is percieved unlikely to
result in material
change.

· Inferred Mineral Resources have been defined
in areas where extension of mineralisation is
supported by sparse drill data (50-100m
spacing along strike) and good continuity in
Cu-in-soil anomalism. A significant proportion
of block grades have been calculated in later
estimation
passes.

· The classification considers all available
data and quality of the estimate and reflects
the Competent Persons view of the
deposit.

Audits · The geological interpretation, estimation
or parameters and validation of the resource
reviews models has been internally reviewed by Altona
staff.

Discussio· The assigned classification of Indicated and
n or Inferred reflects the Competent Persons
relative assessment of the accuracy and confidence
accuracy levels in the Mineral Resource
/ confid estimate.
ence


APPENDIX 2: SUMMARY OF MINERAL RESOURCE ESTIMATES FOR THE CLONCURRY PROJECT
DEPOSIT TOTAL CONTAINED MEASURED INDICATED INFERRED
METAL
TonneGrade CopperGold TonneGrade TonneGrade TonneGrade
s s s

milliCu Au tonnesouncesmilliCu Au milliCu Au milliCu Au
on on on on

% g/t % g/t % g/t % g/t
LITTLE EVA PROJECT
Little Eva105.90.52 0.09 546,00295,0037.1 0.60 0.09 45.0 0.46 0.08 23.9 0.50 0.10
0 0

Turkey 21.0 0.59 123,00- - - 17.7 0.59 3.4 0.58 -
Creek 0

Ivy AnnA 7.5 0.57 0.07 43,00017,000- - - 5.4 0.60 0.08 2.1 0.49 0.06
Lady Clayr14.0 0.56 0.20 78,00085,000- - - 3.6 0.60 0.24 10.4 0.54 0.18
e
A
Bedford 4.8 0.80 0.21 38,00032,000- - - 2.3 0.95 0.23 2.5 0.66 0.19
Sub-to153.30.54 0.09 829,00430,0037.1 0.60 0.09 74.0 0.52 0.07 42.2 0.53 0.11
tal 0 0

OTHER DEPOSITS
BlackardA 76.4 0.62 - 475,00- 27.0 0.68 - 6.6 0.60 - 42.7 0.59 -
0

ScanlanA 22.2 0.65 - 143,00- - - - 18.4 0.65 - 3.8 0.60 -
0

Longamundi10.4 0.66 - 69,000- - - - - - - 10.4 0.66 -
A

LegendA 17.4 0.54 - 94,000- - - - - - - 17.4 0.54 -
Great Sout6.0 0.61 - 37,000- - - - - - - 6.0 0.61 -
hern
A
CarolineA 3.6 0.53 - 19,000- - - - - - - 3.6 0.53 -
Charlie Br0.7 0.40 - 3,000 - - - - - - - 0.7 0.40 -
own
A
Sub-to136.70.61 - 840,00- 27.0 0.68 - 25.0 0.64 84.7 0.59 -
tal 0

TOTAL 290.00.58 0.05 1,668,430,0064.1 0.63 0.05 99.0 0.55 0.05 126.90.57 0.04
000 0
A This information was prepared and first disclosed under the JORC Code 2004 Edition. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported. All other resources classified and reported in accordance with JORC Code 2012 edition.
Note: Tonnages are dry metric tonnes and have been rounded, hence small differences may be present in the totals.
See ASX release of 23 October 2007 and 26 July 2011 (Longamundi, Great Southern, Caroline and Charlie Brown), 23 April 2012 (Ivy Ann and Lady Clayre), 03 July 2012 (Blackard and Scanlan) and 22 August 2012 (Legend) for full details of resource estimation methodology and attributions.
Little Eva is reported above a 0.2% copper lower cut-off grade, all other deposits are above 0.3% lower copper cut-off.



Altona Mining Limited ist ein Kupferproduzent in Finnland und besitzt ein Hauptkupferentwicklungsprojekt in Australien.

Weitere Themen